skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seshaiah, Kira"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lightweight structures with bioinspired metamaterials, with their uniquely engineered properties not found in naturally occurring materials, have garnered significant attention for their potential in various engineering applications. This study explores the mechanical behavior of sandwich plate structures utilizing the Kresling origami pattern, fabricated through a straightforward 3D printing process. By conducting 3-point bending and compression tests, as well as simulations with Abaqus software, the research investigates the distinctive mechanical properties and performance enhancements these origami-inspired structures offer under mechanical loading. This study is noteworthy for being the first to investigate the bending characteristics of sandwich structures utilizing the two cell Kresling pattern or double Kresling, an area that has not been previously explored. Utilizing the Kresling structure in sandwich panels poses a challenge due to its rotational behavior. To address this, we employ a double Kresling pattern, which confines the rotation to the middle layer. This approach ensures that the outer layers remain stable, maintaining the overall integrity of the sandwich panel structure during deformation under mechanical loading. The findings reveal that the 3D-printed Kresling origami core significantly reduces weight while maintaining structural integrity, making it especially beneficial for aerospace engineering, where lightweight yet strong materials are crucial. This research highlights the potential of Kresling-patterned sandwich plates to improve efficiency and performance in supersonic vehicles, providing valuable insights into their structural efficiency and applicability in advanced engineering fields. 
    more » « less
    Free, publicly-accessible full text available January 3, 2026